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I. INTRODUCTION

The past five years have seen a revival of theoretical interest in

predissociation phenomena, coupled with increasing sophistication in

experimental technique [1] and a continuing search for related resonance

effects in the molecular scattering field [2-5]. Given the established

characterisations of predissociation types [6-7] and selection rules

[8-9], and the accepted value of predissociation measurements in

locating the dissociation limit [6,10], the object of recent theoretical

work has been to underline further information available from individual

line width (or lifetime) measurements. This information relates

primarily to the forms of the relevant potential energy curves.

The purpose of this review is to summarise our present under-

standing of predissociation by rotation (type III [6]) and by curve

crossing (type I [6]) in diatomic molecules. The material therefore falls

into two partseach of which includes a formal quantum mechanical intro-

duction, which may also serve to emphasise the connection between

spectroscopic measurements and molecular scattering data. Subsequent

sections cover the available computational and analytical techniques,

followed by a detailed summary of conclusions. An attempt has been

made to include all line width or lifetime calculations for specific

systems published before going to press (May 1973).

The first general conclusion is that the pattern of predissociation

line widths provides a highly sensitive yardstick for the determination

of unknown potential curves. Secondly, the computation of such a

pattern for given potential curves is now a matter of routine, unless
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the predissociation happens to occur from an upper adiabatic (avoided

curve-crossing) potential curve. As an alternative to exact

numerical computation one may expect to apply available relatively

rapid analytical (semi-classical) estimates within an accuracy of 10%.

These analytical formulae also to provide physical insight into the

details of the predissociation pattern, to the extent that a direct

inversion procedure has been developed for determination of the

repulsive potential curves responsible for type I predissociations.

II. PREDISSOCIATION BY ROTATION

The relation between predissociation by rotation [6] and the shape

or orbiting resonances of collision theory [2-5, 11] is by now well

established. Both are due to the existence of a quasi-bound state

separated from the continuum by a potential barrier, as depicted in

figure 2.1, but the two types of experiment are, in fact, complementary

since the scattering resonances most readily detected experimentally

correspond to lines which would appear indiscernibly diffuse in the

spectrum.

Much of the relevant theory is to be found either in the

scattering literature, or at least couched in the language of scattering

theory. Advances have been made by both computational [14-21] and

semi-classical methods [13, 12-32]. Some computational workers have

used the resonant jump in the scattering phase shift [14-17], or the

closely associated peak in the collision delay time (see below) [20,

33-35] to determine the positions and energy widths of the quasi-bound
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states. Others have pointed to the spectroscopically important peak

in the relative amplitude of the wavefunction inside and outside the

barrier region [14, 18-20]; however the intimate connection [12]

between this characteristic and the behaviour of the phase shift has

received relatively little emphasis in the molecular literature. Again

in the semi-classical field attention has concentrated on the behaviour

of the phase shift [24-27], or equivalently (see below) on the location

of complex energy poles in the scattering matrix [28-30], but the

behaviour of the amplitude ratio has been largely ignored.

Our first purpose will therefore be to demonstrate the necessary

connection between resonant characteristics of the phase shift, n(E) ,

the collision delay time Td(E) and the amplitude ration, A(E) . This

general discussion will involve the introduction of complex energy

levels

E = E - iF /2 , F > 0 (2.1)n n n

and lead to Breit-Wigner parameterisations of n(E) , Td(E) , and

A(E) . We shall then specialise to a semi-classical (JWKB) descrip-

tion in order to relate the reasonance positions, E , and widths,

F , to the form of the potential function. Finally, the practical
n'

applications of the theory will be discussed.

§ 2.1 Resonance characteristics

Given that the quasi-bound state with angular momentum J ,

supported by a potential, V(r) , lies in the continuum it is convenient

to take the energy zero at the dissociation limit, V(X) = 0 , and to
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define

2 2k = 2rtiE /A

U(r) = 2mV(r)/2 (2.2)

The wavefunction must then satisfy

Id 2 - ( + 1) =d+ k 2 U((r) - (r) = 0 ,
dr2 r2E

(2.3)

subject to the boundary condition XEJ(O) = 0 . The most convenient

normalisation is to a delta function of energy [36] ;

O XJ(r) XEJ(r)dr = 6(E - E') (2.4)

This fixes the asymptotic amplitude of the wavefunction as,

r X - 2m 1/2
XE,j (r)

where nJ(E)

(2.5) so that

(V(r) = 0) .

time function

sin[kr - Ju/2 + NJ(E)] , (2.5)

is the phase shift, the term -Jr/2 being included in

qJ(E) = 0 in the absence of any distortion potential

Closely associated with nJ(E) is the collision delay

[33-35]

Td(EJ)= 2 E ' (2.6)

the resonance behaviour of which is more conveniently characterised

than that of the phase shift [20].

The significance of the energy normalisation given by (2.4), is

that it ensures unit density of states [37]. Hence the differential
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oscillator strength for aspectroscopic transition from a bound level

Mb(r) of some other electronic states varies as

l Xb(r) M(r) XE,J(r)dri (2.7)
oi Xb (r)1(r

where M(r) denotes the electronic transition moment. Thus, with the

external amplitude fixed by (2.5), a peak in the internal to external

amplitude ratio leads to strongly enhanced overlap with Mb(r) , and

hence to a peak in the spectrum.

The necessary connection between the behaviour of this amplitude

ratio and that of the phase shift is however most readily demonstrated

by the introduction of a generalised solution $kJ(r) of (2.3),

renormalised at the origin such that [12]

lim r- J -  Xkj(r) = 1 , (2.8)
r-+0

and capable of extension to complex values of k ,

k = k' + ik" , (2.9)

and hence according to (2.2) to the complex energy levels given by

(2.1), with

E = (k'2 -k,,2f2/2m
n n n

F = -2ik'k'h2/m
n n n (2.10)

It may be shown [12] that this generalised solution may be expressed in

the asymptotic region, r - - , in terms of two Jost functions fj(+k) ,
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r co1 ikr -ikr
XkJ(r) ~ [fj(k)e -fj (-k)e ] , (2.11)

where for complex k

f3(-k) = [fj(k*)] ,(2.12)

and f j(k) is analytic in k for Im k < 0 . It follows that for

real k (and hence real E ).

r +oo

XkJ(r) Ifj(k) I sin(kr - .Jr/2 + nj(E)] (2.13)

where

nj(E) = arg fj(k) + JT/2 , (2.14)

in agreement, apart from a change in normalisation with equation (2.5).

This shows that both the amplitude ratio (which varies by virtue of the

new normalisation condition (2.8), as Ifj(k)I -1) and the phase shift

depend on the behaviour of the function fj(k) .

Particular attention attaches to complex roots of the f j(+k) ,

of which two types may be recognised. The simplest are zeros of fj(k)

on the negative imaginary axis, k = -iyvJ  say, so that according to

(2.8)

r c o -Yvjr
XkJ(r) A e . (2.15)

These therefore correspond to the bound states with real negative

energies Ej = -Y 2 2/2m . The quasi-bound states on the other hand

are associated with roots of fn(-k) , given by (2.9) with k' > h
are associated with roots of fj(-k) , given by (2.9) with k' > 0,



k" < 0 . Hence r
n

type, TkJ(r) has

given by (2.10) is positive. For roots of this

purely outgoing characteristics

r + 1 ikr
kJ (r) f (k)e 9 (2.16)
kJ 2i J

and as might be expected for a quasi-bound state, the imaginary

component in the energy given by (2.1) ensures an exponential decrease

in the time evolution factor

]exp(-iEt/Xi)l2 = exp(-F nt/ ) ,

with time constant

T = -,/r .
n n

(2.18)

Complex energy (and hence nonphysical) solutions of this type are

termed Siegert [38] states, while the energies themselves are termed

poles in the S matrix, because with the elements of S defined by

the ratios of the outgoing to the incoming amplitudes of the wavefunction,

(2.19)

in the present single channel problem. Hence, Sj has a pole at every

zero of f j(-k) .

A linear expansion in the neighbourhood of such a pole,

fJ(k) = [fJ(-k)] = F(E)(E - E - in/2) ,n n

where F(E) may vary slowly with E may now be used to demonstrate

the characteristic resonance behaviour in the physical (real energy)

8

(2.17)

(2.20)

Si =f iW/f (-k)
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solutions of (2.3). Clearly according to (2.14) and (2.20), with

A(E,J) used to denote the amplitude ratio

IA(E,J) 12 IF(E)I-j(E - E )2 + r /4- (2.21)n n

njI (E) = nj(E) + arctan[Fn/2(E - E)] , (2.22)

where

nj(E) = argF(E) + J7/2 ,(2.23)

while the collision delay time defined by (2.6) becomes

an°o r 16
Td(E,J) = 2M i-(+ 2n (2.24)

(E - E )2+ F 2/4
n n

These are the standard Breit-Wigner parametrisations of A(E,J) ,

nJ(E) and T d(E,J) .

Clearly, if r is sufficiently small that variations in F(E)
n

may be ignored over the resonance region, both the spectroscopic line

shape and the collision delay time functions follow the same Lorentzian

form. The line width parameter F may therefore be taken as the full
n

width at half height of either function. F may also be deduced from
n

the maximum resonance increment, 4?i/F , in the time delay function, or
n

in a purely analytical treatment (see below) from the imaginary part

of the pole in the S matrix.

Possible distortions in the line shape and changes in the peak

position as the line width increases have recently been noted [20].

Since such distortions to A(E,J) and Td(E,J) depend on IF(E)j
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and ang F(E) respectively, they may be expected to differ in kind.

Hence in any comparison with experiment A(E,J) must be employed in

spectroscopic, and Td(E,J) (or nj(E) ) in scattering applications.

These general considerations therefore underline the intimate

connection between the resonance behaviour of nj(E) , Td(E,J) and

A(E,J) , and indicate the origin of the Breit-Wigner parameterisations

given by (2.21)-(2.24) in the sharp resonance limit. The next step is

to relate the resonance positions E and widths F to the form of the
n n

potential function V(r) .

.2.2 Semi-classical theory

The semi-classical (JWKB) method of solution of equation (2.3)

relies on establishing connections between solutions of the form [39, 42]

r/2 ifr kj(r)dr -ifr k (r)dr1
XEJ(r) = [k (r)] 1 Xle + X"e x j

(2.25)

where [40]

2 2 122
k (r) = k - U(r) - (J + )/r , (2.26)

which are valid in the regions a << r << b , r >> c in figure 2.2,

where

d 1
d ( ) . (2.27)
dr kj(r)

Such connections are based on more accurate model solutions of (2.3)

in the non-classical regions around the turning points a, b, and c

where k j(r) = 0 .
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Changes in XEJ(r) will be followed by setting (X', X") in (2.25) equal

to (A', A"), (B', B") or (C', C") according to the choice of phase

reference point x as a, b, or c ; single and double primes are used

to denote outgoing and incoming motion respectively, as illustrated in

figure 2.2. This means since the same function may be referred either

to a or to b in the region a << r << b that

[B'
B"

ioj
e 0 A'

0 -i A"

0 e Al

(2.28)

where

0
aO = j kj (r)dr . (2.29)

The significance of the superscript zero will become apparent later.

The correct behaviour of the wavefunction at an isolated left-

hand turning point, a , now requires that ~EJ(r) should behave as

the asymptotic form of an Airy function [41], which is the exact

solution of (2.3) for a linear approximation to the potential, decreasing

exponentially into the non-classical region r < a . The appropriate

form is [39, 42]

XEJ(r) = A[kj(r)]-1/2 sin(fr k (r)dr + 7r/4) .XEJ a J (2.30)

Hence by comparison with (2.25) (with (A', A") in place of (X', X")),

A' 1 Ae-ir/4 A" 1 A i7/4 (2.31)
2 2 (2.31)

r
E

I
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Equally, at energies below the dissociation limit for which VPEJ(r)

must decrease exponentially for r > b , it may be shown [42] that

j(r) = B[kj(r)] 1 / 2 sin(f k j(r)dr + fr/4), (2.32)
XJJ r J

so that

B' = 1 Bei/4 B" = 1 Be-i/4(2.33)
2 (23)

Consistency between (2.28), (2.31) and (2.33) requires that the energy

shall be chosen to satisfy the Bohr quantisation condition

a = a kj(r)dr = (n + - )7 (2.34)

for a bound state. A semi-classical normalisation of the wavefunction

[42] then yields values for A and B in (2.30) and (2.32),

A (l)nB 2m ] /(2.35)

where Aiw is the local energy level spacing, given by the quadrature

_ DE _ i2 [Jb kjl(r)dr] -l (2.36)
~n m a

Analysis of the quasi-bound states requires a proper treatment of

the barrier region, in place of a simple boundary condition at b

Different models for the barrier yield different relations between

(B', B") and (C', C") in figure 2.2 [22-30], but any connection

formula is subject to the equations of flux conservation

IC'- 2 IC"l12 = IB'12 - IB" 2 , (2.37)
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and of symmetry under time reversal, so that the substitutions

(C', C") + (C"*, C'*) imply (B', B") - (B"*, B'*) .

(2.38)

Hence we may express the general connection in the form

C !

C"

coshy e ,

i sinhy e

~ ie
-i sinhy e B'

, coshy e i B"

(2.39)

and give specific expressions for the parameters y, e and ~ for

different barrier models in equations (2.59)-(2.76) below. Solution

of (2.39) when B' = 1, C"' = 0 gives the following expressions for the

barrier transmission and reflection probabilities

T = C' 12

R = I B" 1 2

2-= sech2y

= tanh2y (2.40)

It now remains merely to combine equations (2.28), (2.31) and (2.39)

in order both to determine the phase shift and to express the external

amplitudes (C', C") in terms of the internal coefficient A ;

.0

- ie ic~-i sinhy e ei

c ie 0
, cosh¥ e i 0,

°0 2 A e /4

ei aJ 1 A e ir/4 -iJ

C'

C"

coshy e- 4

i sinh -iesinhy e



[eycos ca + i e-Ysin aj]
(/z2e - - 7/2)e~

1
2

[eYcos a - i e-Ysin a ] e- ~/26 -G - T/2)

= - A (cosh2y + sinh2y cos 2x J)
2 J

where

0 (1 +

6 = arctan(e 2y tan a) + (0 - () - 7/4 . (2.42)

This means that, with IC'i chosen to satisfy the asymptotic

normalisation given by (2.5)

r -) co 2m 12
EJ(r) - [sin[kr - Jfk/2

A 2k

.re

01 1hi(E) = lim {frk(r)dr - kr + (J + -

c 2

n(res)(E)
i

+ rn (E) + n (res)(E)]

(2.43)

1
)T1/2 + (0 - }

= arctan(e- 2 tan ) ,

while in the internal region, a << r << b ,

XEJ(r)

(2.44)

(2.45)

-1/2/ a

= [cosh2y + sinh2y cos2a]- 1/ 2  m /2 sin(frk(r)dr + 7/4) .
k(r a

(2.46)

14

i 6
e

-iS
e

I (2.41)

whe
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This differs from the bound state solution given by (2.30) and (2.35)

by the factor

A(EJ) =1/2

A(E,J) = [6w(cosh2y + sinh2y cos2cj)] /  
. (2.47)

Hence IA(E,J) 2  governs the spectroscopic line shape.

Clearly, at least for large y when according to (2.40) the barrier

transmission probability is low, resonances in nJ(E) and AJ(E) occur

at energies EnJ such that

b1
f= f k (r)dr - (0 + ) = (n + )T (2.48)

~J a J

This may be regarded as the quantisation condition (2.34) for a bound

level subject to a small (see below) level shift due to the phase terms

2 ( + ) ; as a rough estimate based on a linear expansion for aO and

neglect of any energy variation in (0 + ) ,

E° == E (0n +~ ~n).?i/27r' (2.49)
AE nJ = EnJ - EnJ (nJ nJ (2.49)

where En is the unperturbed level given by (2.34) and Aw is defined
nJ

by (2.36). The subscripts imply that 0 and ; are evaluated at the

resonance point. Enj may also be obtained directly (and more accurately)

from (2.48).

It may be seen with the help of (2.45) and (2.47), to the extent

that energy variations in y are unimportant over the resonance region,

first that the resonance part of collision delay time Td(E) and the

line shape IA(E,J) 12 have the same functionality
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res ~ rs
Td  (E,J) = 2 =E 2-I A(E,J)

= (27/W)[cosh2ynJ + sinh
2y nj cos2aj] ,

(2.50)

and secondly that the total integrated intensity from a single line is

equal to unity

1 1E 1 J}n daj

n IA(E,J) 12dE = 1 E cosh2YJ +sinh 2 Y cos2~ 1 - hM [9 Tr~ n cosh2y nJ + sinh2y nJ cs21

(2.51)

This analysis therefore adds a further link to the theory of intensities

in discrete and continuous spectra [43-44] by including the quasi-bound

states.

The above general expressions are readily reduced to Breit-Wigner

form over the sharp resonance region (e 2 nJ >> 1) , by the linear

expansion

J (n + )7T + DEj(E - En)

(n + 1 )7 (E - Enj) , (2.52)

with the results

(res) (E) = arctan[Fnj /2(En - E)] (2.53)nj n (2.53)

iF nj'nJ

T(res)(EY' = 2KIA(EJ)I2 - nJ , (2.54)

4d (JnJ ( 24J+ (E En
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where

-2yn

nJrnJ = (2hw/ff)e (2.55)

Connor [28] and Dickinson [29] would obtain the same result directly

from (2.41) by applying the outgoing boundary condition

C" = e cosaj - ie -ysinaj = 0 , (2.56)

and the linear expansion (2.52)jto obtain the complex energy of the

Siegert state,

i / 2r nJE = E - - (2h7)e . (2.57)nJ 2

-2~ n
Note that in this sharp resonance limit, e << 1 , r J is

directly related to the barrier transmission probability given (2.40)

in the semi-classical form [3].

rnJ = Th/tvib (2.58)

where tvib = 2/ .

It remains to determine the parameters y, 0 and 4 in (2.39), for

different barrier models. The simplest theory employs independent

semi-classical connection formulae at the turning points b and c

[22-23] with the results

YnJ= f[knj(r)Idr + Zn2 (2.59)

(2.60)enJ = nJ = ° ,
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where the subscript on k J(r) implies that the energy is chosen to

satisfy (2.48). This may be termed the simple semi-classical estimate.

The firstimprovements [24, 26, 28] employ a quadratic approximation at

the barrier maximum

_ ax 1 )2Vj(r) Vna - kr - r ax(2.61)Vj -yk3(r -rma

to obtain

-1 -27T 1/2

YnJ 2

cosh-l[1 +e ,nJ -ll , (2.62)

1

~nJn = ~(C) = F( 2 + is) - c~n|z] + C ,

(2.63)

nJ = 0,

where

(E - Vj ax )/hw

*= (X/ m)1/2  (2.64)

Methods employed by other workers give the same form for yJ but

either a different phase correction [13], or an undetermined phase

connection [25, 27, 30]. Values of the function ~( E which determines

the level shift in (2.49) and some limiting properties [13, 26, 45] are

given in table 2.1. A function of this form also plays an important

part in scattering theory by removing a classical singularity in the

deflection function [13]. Equations (2.62)-(2.64) define what we shall

term the JWKB quadratic approximation. Miller and Good [46] have shown

how this quadratic approximation may be replaced by a more general
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association between the physical barrier and the quadratic form (2.61),

the association being defined by the identity

E = - *fclknj(r)ldr (2.65)

which takes place of (2.64). Our name for this improvement is the

associated quadratic approximation. First suggested without proof by

Connor [45], it reduces to (2.64) in the quadratic approximation and

causes the expression (2.62) for Y J to go over to the simple semi-

classical form (2.59) when e 2  >> 1 (recall that c , 0 for

energies below the barrier maximum). Since however [13,27,45]

1 -1. 7 -32(E) ~ + 2 8 £-3 for c > 1 9 (2.66)

the level shifts predicted by equations (2.49) and (2.63) (but not

covered by the simple semi-classical theory) depend inversely, rather

than exponentially, on E . Hence the leve shift may be orders of

magnitude larger than the line width in the sharp resonance region.

Dickinson [29] and Soop [47] have taken the association method one

stage further in order to obtain a two parameter description. Dickinson

[29] relies on an association between k 2j(r) and the inverted Morse
nJ

form

2{ 2 [2e
-  - e- ]} (2.67)

where q2  is the ratio of the available energy to the barrier height

(measured from the dissociation limit) and t is defined by the

equation
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7t(l - q) = flk j(r)ldr ,(2.68)

where, as in (2.65), knJ(r) contains the true potential function.

The expressions (2.62)-(2.65) are then replaced in the present

notation, by

YnJ = sinh [e cosh 7E+/sinh 2rqt] (2.69)

nJ = X(2qt) - 4(z_) (2.70)

enJ = X(2qt) - 4(+) (2.71)

where

E+ = t(l ± q) (2.72)

X(Y) = argr(iy) - yknjy| + y + 7/4 = X(2y) - ¢(y) (2.73)

and ~(e) is defined by (2.63). This we shall term the associated

Morse approximation. Note that E- is identical with -£ defined by

the quadratic association formula (2.65). Furthermore t is typically

large unless the barrier is very low ( t lies in the range 4-15 for J

levels of the H2  ground state considered in table (2.41), and

X(Y) - -1/12y for y > 2 . Hence it may be verified that (2.69)-(2.72)

reduce to (2.62)-(2.63) with t given by (2.65) except for very low

barriers (low J values) or for (very sharp) levels close to the base

of the barrier.

A final somewhat similar (associated sech ) form may be obtained

from the results of Soop [47] based on association between k j(r) and
nJ
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t {q2 - sech 2 S . (2.74)

The parameters q and t have the same definitions as those of

Dickinson, but now

- cosh[F(t 2  1

YnJ = sinh - sinhnqt 3
nJ =  2x(qt) - c(c') + ~(c+) + 6

aJ = 0, (2.75)

where

I _= (t2  1 1/2 + qt

tn1 + q_ (t2 1 )1/2Zn(E /E,) - qtn]

(1q q2) t2

(2.76)

2.3 Quasi-bound energy levels

Any attempt to calculate the width of a quasi-bound state requires

prior knowledge of its position. Calculated level positions have been

reported for the ground states the H2 [14, 15, 17, 19, 20, 22, 23]

iHD and D2  [20], OH [19] HeH + , 3HeH , 4HeD , 3HeH [5], and

ArK and RbK [31] systems and for a standard model based on the

Lennard-Jones potential [16, 21, 29].

The first calculations [14, 15, 17] employed the points of inflexion

in the phase shift, nji(E) , derived by numerical integration of (2.3),

but this approach has been superceded by use of the time delay function,
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Td(E,J) [20], after recognition that Td(E,J) may be derived from

the same scattering solution, normalised in the form

r +o1/2
XEJ(r) (4m/fhk) /sin{kr - J7r/2 + nJ(E)} , (2.78)

by the quadrature [35],

122Td(E,J) = f- (IEJ(r) -12VEJ(o )dr + (m/hk )sin(2nJ(E) - J7r)

(2.79)

Hence the resonance points, and particularly the level widths, may be

obtained more conveniently from the maxima in Td(E,J) . The positions

of peaks in the amplitude ratio, A(E,J) , first demonstrated by

Buckingham and Fox [14], have also been employed [18,20]. Results

derived from A(E,J) for the ground state of H2 are found to agree

within 0.1 cm- with those derived from Td(E,J) [20] for the sharp

resonances (r < 5 cm ) but discrepancies, due to variation of the

ambient phase shift nj(E) in (2.22), of the order of 1-6 cm- 1  are
J

reported for the broad levels [18, 20] (see table 2.3). Resonance

positions discussed below refer to the maxima in A(E,J), as having

the greatest spectroscopic significance.

A major problem encountered in these calculations is that in seeking

the scattering solution (such that EJ(0) = 0) there is no efficient

algorithm for converging on a resonance a problem which becomes acute

for very sharp resonances [20]; the method proposed by Johnson, Balint-

Kusti and Levine [48] suffers from the same disadvantage. Bain and

Bardsley [21] have therefore devised a different exact procedure
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specifically for the treatment of sharp resonances. Two solutions of

(2.3) are introduced, one of which, f(r) , is defined to have zero

derivative at the origin and to behave as

f(r) r - sin(kr + 6) (2.80)

at infinity. The second solution, g(r) , is chosen such that

g(r) r oo cos(kr + 6) (2.81)

and integrated back to the origin. The resonances are then shown to

occur at energies for which g(0) = 0 , and the level widths for

rotationless states (J = 0) to be given by an expression analogous to

(2.79),

t2k 2 2 1 -
r k 9im {[fo(g2(r) - f2(r))dr - sin(2kR + 26)] }
nJ m - 2k

(2.82)

A similar more complicated expression is given for J $ 0 . A compari-

son between the level positions obtained for the Lennard-Jones model and

those derived from the phase shift is given in table 2.2.

Other more approximate methods have also been suggested. One

approach is to convert the problem into a bound state form by imposing

a boundary condition either at the barrier maximum [19, 20], or at the

outermost turning point [5, 20]. Studies on the H2 ground state [20]

(see table 2.3) favoured the requirement that the wavefunction should

behave as an Airy function of the second type (increasing exponentially

into the barrier region) at the outermost turning point; a similar

suggestion [5] is that EJ(r) should have the same logarithmic
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derivative at this point as the irregular Bessel function Y j+(kr)

[41]. This approach still requires numerical solution of the Schrodinger

equation. The semi-classical theory of § 2.2 shows that this may be

replaced merely by two quadratures (over the potential well a < r < b ,

and the barrier b < r < c ) at each point on a suitable energy grid.

Dickinson [29] has applied the modified quantisation condition equation

(2.4), with (0 + ~) given (2.63) and (2.65), to obtain level positions

for the Lennard-Jones model in good agreement with the exact values

(see table 2.2). It is interesting that almost equally good agreement

may be achieved with a different phase correction by taking the JWKB

theory to second order [16]. Bayliss [31] has also obtained good agree-

ment with exact numerical results [49] for the heavier KAr and RbAr

systems using this second (now very small) phase correction.

§2.4 Level widths

Given the resonance position, computation of the level width

presents little difficulty. Values have been obtained from the slope of

nj(E) [14, 15, 17], from the width and resonance value of Td(E,J) [20],

from the width [18, 20] and the peak value [5] of the amplitude ratio

A(E,J), from the special formula of Bain and Bardsley [21] and from

the semi-classical equations (2.55) and (2.59)-(2.76) [29, 32].

Comparisons are given for the Lennard-Jones system [16, 21, 29] and

for the ground state of H2  [20] in tables 2.2 and 2.3 respectively.

The most striking feature is the accuracy of the very rapid JWKB

estimates. The values obtained by Dickinson [29] for the Lennard-Jones

system in the associated Morse approximation (equations (2.55),
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(2.68)-(2.72)) agree to within 10% with the exact values of Bain

and Bardsley [21], and with the probably less accurate values derived

from the slope of the phase shift by Bernstein et al. [16]. This agree-

ment is possibly not surprising since these resonances are very sharp.

Table 2.3 also shows close agreement between the

exact line widths and the simplest semi-classical estimates (equation

(2.59)) [20];Cchd this agreement may be improved for the broader levels

(U > 20 cm 1), with no more effort by use of the more refined associated

parabolic equations (2.62) and (2.65) in place of (2.59). Thus the

simple semi-classical estimate F(O) may be improved to a value

r ( 1 ) by the algorithm

F(1) = (25r/r)e- 2

= cosh- 1 {[1 + hw/2Tr(0)]1 /2} . (2.83)

Values of t-w , defined by (2.36), required for the computation of

r ( ) were not reported [20], but estimates may be obtained from the

tables of accurate level positions given by LeRoy [50]. In fact quite

rough estimates will suffice, since the level of agreement between

() and the exact values shown in table 2.4 (IJrF (1) - rexactl <

-1
0.5 cm except for the two broadest levels, (v,J) = (0,38) and (8,21))

is unaffected by an increase in hw by 100 cm 1 . The final columns

of table 2.4 also contain values of Dickinson's parameters q and t

defined by (2.68), in order to demonstrate by the magnitude of b

(rt>> 1) the essential equivalence between the associated quadratic

and associated Morse approximations for the levels in question. Hence

the associated quadratic approximation which requires the three quadratures
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defined in (2.36), (2.42) and (2.65), may be taken to be the optimum

semi-classical form for most purposes.

From an experimental viewpoint the most important theoretical con-

clusion is the very strong (exponential) energy dependence of the level

width. Thus, as confirmed by experiment [51], a typical rotational

progression for a hydride system will terminate in absorption in the

form sharp, broad, very diffuse, followed by a complete loss of structure

which may obscure the existence of one or possibly two quasi-bound

( < max_
(E < Vj ) upper state levels. This must result in a discrepancy

between the curve of limiting predissociation and the locus of the

max
barrier maximum, V a  , which is estimated by LeRoy and Bernstein [20]

-lto range from zero at J = 0 to as much as 1000 cm at J = 38 for

the ground state of H2 Hence although extrapolation of the limiting

curve should yield the correct dissociation limit [6,10], deductions

about the long range behaviour of the potential [52-54] must be treated

with caution. Any attempt to extrapolate from observed data to the

true locus of Vmax requires an understanding of both the measurably

sharp and the very broad levels discussed above.

2.5 Summary and conclusions

The properties of non-physical Siegert states with complex energy

levels, exponentially decreasing time evolution and purely outgoing

characteristics have been used in 2.1 to unify the resonance behaviour

of the phase shift the collision delay time and the spectroscopically

observed internal to external amplitude ratio. The existence of such

states also explains the Breit-Wigner parameterisations of n j(E),

Vd(E,J) and A(E,J) (equations (2.21)-(2.24)).

C
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A general semi-classical theory leads first in§2.2 to a quantisation

condition (equation (2.48)) and to expressions for the levelshift, (2.49),

and for the line width (2.55) in terms of three parameters YJ enJ

and nJ . Formulae for these parameters are then given for four different

treatments of the barrier region, of which the associated quadratic model,

equations (2.62), (2.63) and (2.65), appears to be the most generally

applicable.

Different techniques for the location of quasi-bound states are

discussed ing2.3. The most significant practical conclusion is that the

(associated quadratic) semi-classical quantisation condition appears to

be remarkably accurate.

Recent semi-classical formulae for the level width are also shown

to achieve high accuracy even for very broad levels. Thus there would

appear to be little necessity for exact numerical computations in this

field. The existence of reliable analytical formulae may also be expected

to lead to more accurate location of barrier maxima, in cases where the

highest quasi-bound levels are indiscernably diffuse.

III. PREDISSOCIATION BY INTERNAL EXCITATION

Just as predissociation by rotation may be seen as another

manifestation of a shape or orbiting resonance, so is predissociation

by internal (electronic) excitation (Herzberg's type I [6]) associated

with the Fano [69] or Feshbach [70] resonance phenomenon in scattering

theory. The situation is complicated by the necessity to consider at

least two electronic states. Physical mechanisms and selection rules
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governing the necessary mixing of electronic states have been well

characterised [8, 9] for many years. Our present interest is in the

origin of the detailed dependence of the line width or lifetime

pattern as a function of vibrational and rotational state. Recent

work [56-68] has confirmed an early suggestion by Rice [55] that

fluctuations in the line width, due to interference between the nuclear

wavefunctions for the interacting state, provide a sensitive measure

of forms of the relevant potential energy curves.

The subsequent theory is set in context by a short resume of the

Fano [69] theory of interaction between discrete levels and the

continuum; alternative approaches have been suggested by Feshbach [70]

and more recently by Van Santen [71]. We also include for the sake of

completeness a brief account of possible electronic origins of the

interaction term.

3.1 The Fano lineshape

Fano [69] first considers the coupling between a single discrete

level n and a continuum of states W . Second order interaction

between n and other discrete states On ' are therefore neglected

at this stage. The normalisations are chosen such that

(On| H| n) = En

(EE' IHI|Ell) = E'6(E" - E')

(E IHI n)= (OnlJHIE,) = VET n -(3.1)

This implies according to (2.5) that
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E'r +~0 2m 11/2E rET ' 2 ]k sin[k'r + 6(E')] , (3.2)

where ~E' depends on the other (electronic and angular) coordinates

of the system. Our purpose is to find an (energy-dependent)

eigenfunction

TE = a(E)n + f b(E,E')PE'dE' , (3.3)

subject to the same asymptotic normalisation. The functions a(E) and

b(E,E') will then determine the line shape.

It follows from (3.1) and (3.3) that at the energy eigenvalue E ,

Ena(E) + |VnE,b(E,E')dE' = Ea(E) (3.4)

VE, a(E) + E'b(E,E') = Eb(E,E') . (3.5)

b(E,E') is now eliminated in favour of an admixture ratio Z(E)

which becomes the central quantity in the theory, by a rearrangement

of (3.5) [36];

b(E,E') = E - + Z(E)6(E - E') ] VE,na(E) (3.6)

At the same time the presence of the resulting pole due to the term

(E - E')- 1  makes it necessary to specify how the integrations in (3.3)

and (3.4) are to be carried out; otherwise Z(E) is not uniquely

defined. The most convenient choice is the Cauchy principal value [72],

denoted by P below.

Hence on substitution for b(E,E') in (3.4) and removal of the

common factor a(E)
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E - E - F(E)
Z(E) = n

lVnE i2

.OIFVn2dE'
F(E) = P. -- .

-o-;E

(3.7)

(3.8)

It remains to determine a(E) by applying the asymptotic normalisation

condition (3.2) to TE in (3.3). Equations (3.2), (3.3) and (3.6),

together with the identity

p0f sin(k'r + 6) dE'
-00 (E - E')

= Pf- (k2k' sin[(k - k')r + kr + 6] dk'
-C ( 2+k'J c (k - k')

co( 2k'sin(k' - k)r
= "~ [ok+ k'j cos(kr + 6) (k - k') dk'

= -7 cos(kr + 6) , (3.9)

imply that

E E
2_ k] a(E)VEn{-T cos(kr + 6) + Z(E)sin(kr + 6)}

2k En
[_2m 1 /222 2 1/2 Cr)
IkI a(E)VE [72 + Z (E)] / sin(kr + 6 + 6( ) ) ,

(3.10)

where

tan 6(r) = -(7r/Z(E)) ,

because ~n

(3.11)

r 3- 0o
~0 . Hence for the correct asymptotic behaviour

a(E) = V-1 [2 + Z2(E)] -1/2
nE

where

(3.12)
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This function, which represents the amplitude of the discrete component

in the energy normalised solution (3.3), is the direct analogue of

the amplitude ratio A(E) of the previous section

With Z(E) given by (3.7), equations (3.11) and (3.12) show that

6(r) and a(E) have the characteristic Breit-Wigner resonance behaviour,

given by (2.21) and (2.22),

6(r) = arctan[Fn/2(E' - E)] , (3.13)
n n

2 1 n
ja(E)[ = - -E)2+-4 rj(3.14)

=2-r (E -E') 2 + 1 2

where

E' = E + F(E) (3.15)n n

rn = 2rjV nE2 (3.16)

Furthermore by analogy with (2.51)

E'+r /22
E n ja(E)j dE = 1 (3.17)

E'-r /2
n n

Notice that the level width F depends, via V nE only on the
n n

resonance continuum state ,E ' but that the levelshift function F(E)

appears in (3.9) as an integral over the full continuum. Both F and
n

F(E) are strictly energy dependent but they may be evaluated with

sufficient accuracy at the resonance point E if the line width is

small compared with the level spacing.
small compared with the level spacing.
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Finally Fano [69] obtains a compact expression for the spectro-

scopic transition moment by collecting the above results in the form

_E = O sin 6 (r)
nE

- WE cos 6(r)

where n represents the original discrete state n modified by an

admixture of continuum states,
admixture of continuum states,

(3.19)= + Pf VnE E' dE' .

Hence the transition moment between 'E and another state ~o becomes

(¢EITI%) = rV*E (%1T 1) sin 6(r) - ($EJTJIo) cos 6(r)

(3.20)

The spectroscopic absorption line shape therefore differs according

to the relative values of (nInTJ|o) and ( EJT¢ o) . It takes the

Lorentzian form

I(0ElTJl)J2 =
rn l

27T[(E - En) + r /4I

when transitions between ~o and the continuum WE are forbidden, but

appears as a Lorentzian emmission line, against the continuum absorp-

tion, if (InJTJ ) = 0;

I (E IT o) I 2

[(E - E')2 + rn
I (EITJIo) 2

(3.22)

Interference between the two terms in (3.20), results in a distorted

(3.18)

(3.21)
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line shape (see figure 3.1) characterised by Fano [69] in terms of the

ratio

q = (4nJTJfo)/rV~E(*EITIo) .q =E O .(3.23)

FaIO eat

Herzberg and Jungen [73] have observed this characteristic/Beutler [74]

line shape in the pre-ionised Rydberg spectrum of H2

Fano [69] also extends the argument to cover several discrete states

n interacting with one continuum WE , and several continua Ei)

interacting with one discrete state. The former naturally always

applies in diatomic systems, but corrections to the one level analysis

above become significant only when the line width given by (3.16) becomes

comparable with the level spacing. The latter situation may arise in

certain diatomic molecules, but it is of more general significance in

the polyatomic case because each (vibrational-rotation) channel has an

associated continuum of states [75].

The major correction to the theory in the many level, one continuum

case is that the perturbed levels appear as the eigenvalues, Ev , of

a level shift matrix [69] with elements E 6 + F nm(E) , where
nnm n

VnE,VE,mdE'
F (E) = Pf Em(324)
nm E - E'

This leads to the introduction of transformed discrete state combinations

v= n Cvnz n (3.25)

where the cVn form the eigenvectors of the above matrix. The energy

normalised solution YE finally appears in the form
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Y = Cos {E (3.26)
EV

Y E= co ~(r){z EV-EE %v- bE} ' 3.6

where

tan 6  (3.27)
v E - E (3.27)

VvE, E, dE'
= + +Pf vE' E' (3.28)

The conditions for the validity of (3.15)-(3.18) are therefore

first that IFnm(E)l << E - E so that
n m

Ev E + Fnn(E) (3.29)

and secondly than IVEn I << Ev - Ev, in which case the sums in (3.27)

and (3.28) may be approximated by a single term at each resonance, and

the term [cos 6(r)VEv /(E - E )] reduces to (sin 6(r)/7V ) as in
Ev V nE

(3.18).

The results for the one discrete, several continua case may be

summarised in the form [69]

v(i)
TE1 = sin 6(r )  Vn E Cos 6(r) , (3.30)

E = nE n inE

where

n= -nES 'WE'dE'
n +  p w (i)'" (i

n n i E - E'

=2 EjvUi1 (3.31)
nE i nE

and 6 (r) is given by (3.13). Both the level shift F(E) , and the
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line width Fn therefore appear, via VnE in (3.25), as a simple
n nE'

sum of the previous single continuum formulae taken over the continua in

question.

3.2 The interaction term

The theory in the previous section is quite general. When specialised

to a diatomic system the interaction term may be written

VnE = So X2n(r) H2 1(r) XlE(r) dr , (3.32)

where

H21(r) = <P21H(q,r)lP 1>(3.33)

Here n denotes a particular vibrational, total angular momentum level,

IP1>  and IP2 >  are used to designate appropriate electronic and

rotational angular momentum states)and the integral in (3.33) is taken

over the electronic coordinates q and the angular coordinates of the

nuclear position variable r . X2n(r) and XlE(r) are the corresponding

vibrational and continuum wavefunctions, normalised to unity and to a

delta function of energy respectively.

Predissociation may be induced by both internal (intramolecular)

and external interactions. The important internal cases are covered

by the selection rules and expressions for H12(r) given by Kronig

[8]. These require in every case

AJ = O , + + + , g -+ -u , (3.34)

but interactions governed by
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AA = O,±l in cases (a) and (b)

AO = 0,±1 in case (c) (3.35)

are allowed. There is also a weak selection rule

AS = 0 in cases (a) and (b)

which may be broken by spin-orbit coupling. An important observational

distinction is made between homogeneous and heterogeneous inter-

actions [76] for which AA = 0 (or AQ = 0 in case (c)) and AA = ±1

(or AQ = ±1) respectively, in that the latter(which arise from rotational-

electronic coupling)yield an expression for H12 (r) proportional to

[J(J + 1) - A(A ± 1)]/2 . A short table of expressions for H12(r)

evaluated in the approximation of pure precession has been given by

Czarny, Felenbok and Lefebvre-Brion [61].

Observed predissociations have also been attributed to the external

interactions induced by magnetic fields [9, 77] and molecular collisions

[80-82]. A condensed form of Van Vleck's theory [9] of magnetically

induced predissociation has recently been given by Chapman and Bunker

[79]. Qualitative aspects of the theory of pressure induced predissociation

have been considered [81, 83] but a comprehensive theory remains to be

developed.

3.3 The Franck-Condon approximation

The existence of an intersection between the repulsive and bound

state curves, Vl(r) and V2 (r) respectively, may be used to justify a

significant simplification in equation (3.32), because the effective



37

integration region is known [84] to be localised at the crossing

point, R; an analytical estimate obtained in43.5 suggests an effective

range between ±0.05 ~ and ±0.20 X in typical systems. Under these

conditions it may be permissible to replace H12(r) by its value, H12,

at the crossing point, so that

r 2TrlV El2  = 2TrIH12 lo X2n(r) XlE(r)drl 
2  (3.36)

The validity of this Franck-Condon approximation to the interaction

element is supported by exact numerical calculations [56,61], and by

analytical arguments inJ3.5 below. The use of a similar Franck-Condon

approximation in the computation of the level shift by means of

equation (3.8) is however open to greater risk because the significant

integration range in the evaluation of VnE' varies as E' spans the

continuum.

A second limitation on the validity of (3.36) is that the line

width obtained should be small compared with the level spacing (see 3.1).

A significant case not covered by (3.36) therefore arises when H12 (r)

is sufficiently large that the predissociation occurs from the upper

adiabatic potential curve, V+(r) , where

-1 [V (r) + V2(r)] ± 2 {[Vl(r) - V 2(r)] 2 +4H (r)}1/2V±(r) 2=r2 + 1

(3.37)

rather from the diabatic curve V2(r) . The observed predissociation of

ICl [85] and IBr [86, 87] are assumed to be of this type. In these

circumstances equation (3.16) remains valid provided that X2n(r) and
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XlE(r) in (3.32) are replaced by the bound, X+n(r) , and continuum,

X-E(r) , wavefunctions determined by V+(r) and V_(r) respectively

and the interaction term is written as [60, 88]

Hd(r de ddH+_(r) = -H_+(r) = dr + dr dr ' (3.38)

where 0(r) is the adiabatic mixing parameter

2H 12 (r) 339
(r) = arctan V (  - V ]( )  _

_1 V2(j

However the presence of a peak in (dO/dr) , and the disappearance of a

crossing point precludes the use of a Franck-Condon approximation in the

evaluation of VnE' given by (3.32).

Intermediate cases between these near diabatic and near adiabatic

limits may be covered by diagonalisation of the Fano level shift matrix

defined by (3.24), in order to determine the appropriate admixture (3.25)

of bound states. A simpler alternative may be to seek a direct

solution of the appropriate coupled differential equations, either by

numerical [60] or by analytical [66] techniques. It is interesting to

find that an exact model computation of this type, covering the full

range of possible interaction strengths [60], shows very few resonance

positions which depart significantly from these obtained by either a

strict diabatic (distortion) or adiabatic approximation. This study

gave however only a graphical indication of the level widths.

Finally attention may be drawn to the possibility of predissociation

in the absence of a potential curve crossing (type a°, b0 or c° in
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Mulliken's classification [7]). Such cases may fall into either the

"non-diabatic" (predissociation from V2(r)) or "non-adiabatic"

(predissociation from V+(r)) category, and no decision can be made

without examination of possible changes in the electronic state. Even

in the non-diabatic case however the Franck-Condon approximation (3.36)

would require careful justification in view of the absence of a crossing

point.

3.4 Exact numerical results in the Franck-Condon approximation

Within the validity of the Franck-Condon approximation (3.36), a

computation of the line width rests on knowledge of the exact numerical

wavefunctions XlE(r) and X2n(r) . Henceforth n will be taken to

include a pair (v,J) of vibrational rotational quantum numbers.

There is no problem such as that encountered for shape resonances (see

2.3) in locating the level position because X2n(r) may be taken as a

vibrational-rotational eigenfunction of the experimental RKR bound

state curve V2 (r) . For any given repulsive curve Vl(r) , the

continuum state XlE(r) is also readily determined; the only problem

concerns normalisation. The use of a true continuum state normalised

as in (3.2) by comparison with a spherical Bessel function in the

asymptotic region [89] is strictly preferable on grounds both of compu-

tional speed and flexibility, but a pseudo-continuum approximation is

frequently employed [58,591, according to which

1/2

X (r) 3N X1N(r) ,(3.40)1E (3.40)
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where XlN(r) is the N-th normalised bound wavefunction for the

potential Vl(r) modified by an infinite wall at some large distance.

Given such wavefunctions, it is possible to vary the assumed repulsive

curve until the computed line width pattern agrees with that obtained

by experiment. Computations of this type have been performed for

predissociations from the states of 02(B3Eu) [56, 57], N2(b' )
2 u 2 u

[62], H2 and D (D'T ) [58], OD(A Z+ ) [61] and I2(B3Tr(0) [58, 63].

A similar calculation for the levelshift has been reported for the

B(O ) of Se2  [64].
u 2

The first general conclusion is that the results are indeed sensi-

tive to the form of the repulsive curve. This is drmatically illustrated

by the calculations of Reiss and Ben Aryah [57] and Murrell and Taylor

[56]. Secondly the line width pattern is found, as first predicted by

Rice [55], to fluctuate with v at a frequency which is high or low

according to whether the intersection occurs on the attractive or repul-

+
sive branch of V2(r) (types c or c in Mulliken's notation [7]).

This behaviour may be attributed to a variation in the relative phases

of the wavefunctions XlE(r) and X2n(r) at the crossing point. Hence

the oscillation frequency depends on the rate of divergence of Vl(r)

and V2(r) above the crossing point. Typical patterns obtained by
2

Murrell and Taylor [56) are shown in figure 3.2. The irregular nature

+
of the fluctuations in case c means that a single repulsive curve

may give rise to two or more regions of strong predissociation separated

by intermediate v levels for which the predissociation is weak.

Theory [56, 63] suggests that the observed predissociations of 02(3E )
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[3(+[90-91] and 12[ T(Ou )] [63, 78] may be understood in this way. A

second consequence is that even when the predissociation becomes so

strong that all levels appear indiscernibly broad one may expect to

find a few scattered sharp lines; the visible spectrum of IBr [87]

is a clear example of this. The observation of such "vestigial remains"

[55] would itself provide important information about the repulsive

curve.

Similar fluctuations in the theoretical line width as a function

of the rotational quantum number (in this case N) have been reported

for the A(2E+ ) of OD [61]. The variation with N(N + 1) is now

however sufficiently slow that a more regular oscillatory pattern may

be recognised (see figure 3.3). Again, within the accuracy of the

measured line widths, the experimental pattern is found to be consis-

+
tent with a single repulsive curve of type c , attributable on the

* 4
evidence of the magnitude of line widths to the state ar ( 4ir) . A

similar calculations for the heterogeneous b predissociation from

the D('7r ) to the B'(' +) of H2 [59] shows over the small J range
u n2

considered (0 < J < 10) no Franck-Condon contribution to the line

width variation with J ; the entire variation obtained is may be

attributed to the J dependence of H12 in (3.36).

The above conclusions are derived in the main for predissociation

± + +
of types c . For an extension to cases a and b for which the

asymptotes lie at and above the curve crossing point respectively [7],

one may note that the predissociation pattern depends by the above

arguments only on the local forms of the potential curves in the
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crossing region. Hence one must expect an abrupt onset of the fluctuating

line width pattern in place of the smooth increase shown in figure 3.2.

Furthermore any consistent theory must also account for any perturbations

below the predissociation limit. No calculated predissociations of

i i i
types a , b and c , for which the crossing point coincides with the

minimum in the bound state curve [7], have been reported but there ap-

pears no reason to expect a qualitatively different line width pattern.

For the reasons given above, no conclusions can yet be reached for the

0 0 0
cases designated a , b and c .

Turning to the level shift, Atabek and Lefebvre [64] have recently

applied equation (3.8) to the interpretation of reported shifts in the

B(3En) state of Se2 [93]. The experimental results are shown to be
n2

+
consistent with an intersection of type c , but a discrepancies are

found between these Fano level shifts, and the Born Oppenheimer (or

adiabatic) shifts attributable to the difference between V2(r) and

the lower adiabatic curve V_(r) defined by equation (3.37). The

significance of these discrepancies remains to be investigated. Other

features of interest are first that the calculated level shifts below

the crossing point (IF(E ) I = 8,10 cm
1  for v = 18,19) exceed the

v
-1 -

corresponding widths (r18 < 0.00 cm , r9 0.02 cm ) by several

orders of magnitude. Secondly a projection to levels above the crossing

point indicates that the level shifts oscillate about zero as v

increases. Quantitative conclusions drawn from a calculation of this

type must be regarded as tentative in view of the lack of any objective

criterion for the definition of an experimental level shift. Nevertheless,

it is tempting to suppose that simultaneous predictions about the
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behaviour of the line width and the level shift above the crossing

point might lead to experimental detection of the fragmentary remains

of the spectrum which could be used to refine the details of the model,

even when most lines are indiscernibly diffuse.

Analytical approximations which shed some light on the above

numerical conclusions are developed in the following section.

3.5 Analytical approximations

Analytical approximations to the line widths and level shifts are

conveniently developed in the notation indicated in figure 3.4. Here

Vi(r) denote the centrifugally corrected potential curves
1

Vi(r) = V.(r) + (J + 1 )2 2 /2mr (3.41)

1 )2
in which the Langer substitution [40] of (J + 2 ) for J(J + 1) ,

2

(made here for consistency with the discussion in 2.3) may be regarded

2 2
as a common small semi-classical correction, -2 /8mr , to the two

potential curves. This substitution has no effect on the position, R ,

of the crossing point, with energy

EXj= V1(R) + (J + )22/2mR2  = V2 (R) + (J + 1 )22/2mR2

(3.42)

or on the potential derivative difference

AF lJ 2J (3.43)

where

Fi -(aV./dr)r= R  , (3.44)
IJ r=R
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which play an important part in the theory. AF is in fact independent

of J , and (in the notation of figure 3.4) necessarily positive.

Finally it is convenient to define two phase integral combinations

+ R b2J
vJ = fR +f kl (r)r)dr + 2
v alJ lj R 2J

= fR  k (r)dr fR
vJ = a2J 2Jr alj klj(r)dr (3.45)

for the interpretation of + and - predissociation respectively;

here the functions kl j(r) and k2J(r) are defined by (2.2) and (2.36)

+
with E = E in each case. By this definition ~ J may be associated

vJ vJ

with the limiting form of the upper adiabatic potential defined by (3.37),

V+(r) = V (r) r < R
+ 1

V V(r) r > R (3.46)
2

as H12(r) - 0

Franck-Condon approximations. The first analytical line width expressions

are obtained in the Franck-Condon approximation, applicable for small

0
H12 in (3.36). The simplest is that derived by the method of Landau
12

and Lifshitz [84] from the semi-classical forms (2.30) and (2.32); thus

2m- - 1/2 b

X2vj(r) = 2sin[ 2J k (r)dr + Tr//4]
X2k 2j(r) r 2J

2J ]

2 ( 1/2

X (r) = sin[fr k (r)dr + Tr/4] (3.47)
lEJ LT7r~h2k2j(r) a1J lJ2aj
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+ + +
for a predissociation of type a , b or c . The argument involves

a quadratic expansion about the crossing point for the phase of the low

frequency component of the product X2vJ(r)XlEJ(r) in (3.36), leading

to the following form for the line width

o
_

2EW JH 1H2 1 2 + 2
r J = 2 2 cos(x + v + Tr/2)dx

= r 0  sin2(¢+ + 7/4) (3.48)

where

-41iw JIH 2j
= 12 (3.49)

vJ tivj AF

and

= AF/2v vj

1 IVE - E .(3.50)

2 vJ vJ xJ

A similar expression

0 2
FvJ = rvJ sin2(~vj + /4) (3.51)

is obtained in cases a , b or c

The relation between the Fresnel integral in (3.48) and the error

function [41] indicates that 95% of the integral arises from the range

jxj < 2(2/)1/2 . Hence equations (3.48) and (3.51) depend on the

validity of the semi-classical approximations (3.47), and on the assump-

tions of linearity in Vi(r) and constancy in H12(r) over the range
z 1
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r = R ± 2[v j/AF] /2
vJ

2 1/4
R ± 5[(E j - E )/mAF ]i/ (3.52)

where in the second line of (3.52), the units are taken to be r(X) ,

E(cm 1) , m(atomic mass units), F(cm 1 -l) . The significance of

this transition zone, the width of which increases with increasing

energy, was first recognised by Bates [94]. Parameters applicable to

the predissociations of 02( 3Z ) , I2(B r(O+)) and OH(A 2Z+ ) are

listed in table 3.1. Note that since AF may become quite small for

inner (a , b or c) curve crossings, the Franck-Condon approximation

may require special justification in these cases, particularly for

systems of low reduced mass.

A second analytical approximation is available to cover energies

near and below the crossing point, for which overlap between the

transition zone and the classical turning point regions invalidates the

semi-classical approximation (3.47). One is necessarily now interested

+
only in predissociation of types c and c . In the latter case for

example, the following Airy function [41] approximations are applicable:

-1-1/2

X2vJ (r) 2 Ai[- 2J (r - a2J)]

~2j

-m 1/2

XlEJ(r) = 2 ] Ai[-a 1 j(r - alj)] , (3.53)

where

aiJ = (2mF / 2)l/3  (3.54)
iJ iJ
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and the normalisations are chosen to be consistent with those in

(3.47) (see Landau and Lifshitz [95] ). Equations (3.53) define exact

wavefunctions for the potential curves

Vi(r) = ExJ - Fi(r - R) , (3.55)

with Fij > 0 . Hence the turning points at energy Evj are given by

(3.56)

With the necessary overlap integral derived in the appendix, the final

line width expression may be shown to be

o 2 *r = TrIv (v /Vj)Ai [-(E -E )/Ej] IvJ vJ vJ J vJ xJ J

* 1 *2
Ej = mvj = I2F2 F2 /2mF 2) 1/3

This formula was first given by Rice [55], and rediscovered independently

by Degenkolb, Steinfeld, Wasserman and Klemperer [78] and the present

author [65]. It may be shown to go over to (3.51) when (E j - E xj) >>

Ej because [41]

i(-) Z >> 1 -1/2 -1/4 2 Z3/2
-~ Tr Z sin( ~ +3 /4) , (3.59)

and within the validity of (3.55)

= (2m)1/2 {fR [E

-h a2EJ a2 j

_ fR
alj vj xj

EJ + F2j(r - R)] 1/2dr

+ F j(r - R)] /2dr
lJ

= 3 [(Ej -E )/E3] /

where

(3.57)

(3.58)

(3.60)

aii (Evj EXj )IFii
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+
Equations (3.57), (3.58) and (3.60) (with vJ in place of ~vJ )

vJ v
+

may also be shown to be valid in case c ; the argument requires merely

a reversal of sign in the argument of X2vj(r) and the introduction

of IF2JI in the definition of 2J '

As a measure of the relative validities of (3.48) or (3.51) and

(3.57) we may note that equation (3.59) reproduces the Airy function

within ±0.025 at the first maximum, Ai(-1.012) = 0.1536 , and within

±0.005 for Z < -3.0 . Hence as a general rule the semi-classical

forms (3.48) or (3.51), which require a linear approximation to the

potential only over the transition zone (see (3.52)), may be taken to

be superior for Evj - Exj > 1.5 E

Before examining the physical significance of these results, we

may note that an extension of the above argument to include an

exponential interaction term

H1 2(r) = H1 2 exp[-a(r - R)] (3.61)

may be shown to yield [96].

vI+ F I - Ev -x

FvJ = TFvJ{v-j 3exp AF 1 Ai2[ vJ E E

(3.62)

where

Et = (2a2FjF2jF2mAF) 2 (3.63)
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The asymptotic form of (3.62),

2Y3mF FE E EJ3/2
rexp { (FlJ F 2 ) 2 f E-/

vJ +v -I
2T

vjU IV
_ cV2ivj

AF (3.64)AF 4

differs from that derived from (3.57) by the presence of the exponential

factor and the additional phase term, a Mvvj/AF . The former is

probably unimportant in most cases since [i2a3 (F1j + F2j)/3mAF
3] 10- 3

for F1J = 1600 cm1A , F2J = 8000 cm , a
-  = 1 A-1 and m = 10 a.m.u.

for example. The form of the phase correction again underlines the

significance of equation (3.52); it will be small provided the range,

-1
, of H12(r) is large compared to the width of the transition zone.

We turn now to consider the physical factors affecting the line

width variation with v at given J . Figure 3.5 gives a comparison

between the predictions of equations (3.48) and (3.57) and the computed

values of Murrell and Taylor [56]. The properties of the Airy

function [41] indicate that the line width envelope should reach a

maximum at Exj + 1.019 Ej, with a point of inflexion at the crossing

point and an exponential decrease

r 4vJexp 3 4E v3/2 (3.65)

for E - Evj < -E . The much slower decline at higher energies is

governed according to equation (3.49) by the ratio (wvj/Vvj) ; note
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that since the local energy spacing, lij , must vanish at the

dissociation limit, even when the predissociation appears very stronga

discrete spectrum must be regained as the energy increases.

The frequency of oscillations within this envelope depends on the

energy variation of the appropriate phase integral ~ J or j . Seen

in this light the oscillations may be attributed to semi-classical inter-

ference [97] between the two possible escape trajectories associated

with transitions at the crossing point during outward or inward motion

respectively, the latter being followed by reflection at the classical

turning point on the repulsive curve. Hence the line width pattern is

in effect an interferogram for the nett path difference b2J - alj or

alJ - a2J in cases + or - respectively. This idea is fully

exploited ini3.6.

Seen in more concrete terms, it is clear from figure 3.4 and from

+
the definitions (3.45) that the energy dependence of vj must depend

+
on the rate of divergence of the potential curves. In case c the

necessary derivative may in fact be associated by the usual semi-

classical arguments (see (2.36)) with a hypothetical energy spacing

hw( + )  in the potential curve V+(r) defined by (3.46);

ra ) aE 7 a I+ rfw IvJJ vJ [lEJJ I wX +)J (3.66)
~T__ v vJ~ _ W+ vJ

This means that close to the dissociation limit, where both hw v and
vJ

hw( + ) must depend only on the long range form of V2J(r) [98],

+
avJ

v = (3.67)
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The factors affecting the line width variation with J may also

be understood in the light of equations (3.48), (3.51) and (3.57). The

overriding consideration is that the energy difference in (3.57) varies

as

Ej - Ej = E - E + [hcB - 2/2mR 2]j(J + 1) (3.68)
vJ xi v xo V

Hence for vibrational levels near the crossing point the line width must

+
increase or decrease with increasing J in cases c or c

+
respectively. Similarly the phase terms +vJ and vJ may be seen to

be increasing and decreasing functions respectively, with (D j /J)
vJ

approximately given by [67]

Svj =(2J + )Tv , (3.69)

where hw( + ) and B (E ) are respectively the hypothetical vibrational

spacing and rotational constant at the measured energy E for the
v

potential curve V+(r) .

Finally the effects of isotopic substitution may be considered.

It is convenient to make comparisons at a common absolute energy and at

equivalent mass reduced J values (having a common value of

J(J + 1)/m) . With these provisos, the envelope function r in (3.48)
vJ

1/2
and (3.51) carry however a factor m /2 

. Hence when regarded as a

function of energy the onset of strong predissociation will appear

sharper and the subsequent oscillation frequency will be increased at

higher mass values.
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General approximations. A quite different type of semi-classical theory,

analogous to that described in 2.2 has also been developed [66]. This

relies on the use of semi-classical connection formulae (equation (18)

of reference [66]) for the Stuckelberg-Landau-Zener [99-101] curve

crossing model. The results are therefore again limited by the approxi-

mations of constant velocity, constant interaction and linear potential

curve expansions over the transition zone defined by (3.52). Being

non-perturbative, however, the method carries no restriction on the

magnitude of H12 . Furthermore it yields analytical expressions both
12

for the line width and for the level shift.

The results may be expressed in terms of one or other of the

Landau-Zener transition probabilities [99-101]

PvJ = 1 - exp[-2H 12 t2/iv AF]

PvJ = 1 - PJ = exp[-27rH2 /2v AF] ; (3.70)
vivJ 12 vJ

PJ gives the probability of a transition from V (r) to Vl(r) on a

single passage through the crossing zone, while PvJ refers to a

transition from one adiabatic curve V+(r) or V (r) to the other.

Predissociations of measurable line width are predicted when either

PvJ << 1 or P j << 1 (3.71)

The former correspond to what we have termed the non-adiabatic pre-

dissociations discussed in the first part of this section, and formulae

for the line widths are identical with those given by (3.48) and (3.51).

The associated level shifts may be written



53

1 o sin( +v7AEVJ = r sin(vJS + ) cos( + T (3.72)

+ + +
in cases a , b or c , and

r - Tr(3.73)AE =- F°j sin( vj + cos (EvjvJ )37

in cases a , b or c .

The second inequality in (3.71) refers to predissociation from the

upper adiabatic potential curve VJ(r) defined by (3.37), such as that

observed in the visible spectra of IC1 [85] and IBr [86-87]. It is

~+ ~+ ~+
convenient to coin the notations a , b or c to distinguish predis-

sociations of this type from the more common non-adiabatic phenomena.

The expressions for the line width and leve now become

J cos2 ~(2) (374)

Fvj = vJ Cos 3vJ

1 _o (2) (2)
AEvJ 2 J sin J cos J (3.75)

i - -vJ s ivJ ~vJ'

where

o fWv- 22
FJ = 2 exp[-2TH12 /EVvJAF] , (3.76)

and

¢(2) k = rdb  2 J k2J- dr . (3.77)(_2m ) b2J [_ V2(r)]
vJJ

Note that H vj now refers to the level spacing in V+(r) The ratio

of the line width to the local energy spacing, rvj/hwvj , is therefore

predicted to oscillate within an increasing envelope as indicated

schematically in figure 3.6. The disappearance of hwJ at the
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dissociation limit however again implies that the lines must

eventually become sharp.

These equations raise several points of interest. First the

inequalities (3.68) give quantitative tests for the validity of a

non-diabatic or a non-adiabatic description. Secondly equations (3.74)

and (3.77) predict a sharp line in the spectrum whenever a bound level

of V+(r) coincides with a bound level of V2 (r) because, by the Bohr

quantisation condition (2.34), (2) = (n + 1 ) under these conditions.

This behaviour is strikingly demonstrated by the visible spectrum of

IBr [86, 87]. Finally the intimate connection between the line width

and the level shift which implies zero level shift for the sharp

resonances under all conditions may have some general significance.

Although this behaviour is not confirmed by the numerical results of

Atabek and Lefebore [64] possibly due to strong curvature in the repul-

sive curve Vl(r) , it means within the validity of the present model

that the measured energy variation with J contains a systematic error

in the rotational constant. Thus at the sharp resonance points

(J v 2 vJ 1 A ) (3.78)v-2 vJ _oJ(J + 1)

for non-diabatic predissociations, while

r (2)1IEvj 1 ½I ~vj
Ev = hcB 2 vJ P(J+ 1)(3.79)

in the non-adiabatic case. The behaviour of [acj /DJ(J + 1)] has beenvJ

discussed above (see 3.69)); the application of similar arguments shows

that

E
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j(2) 2
~vj Bv B

-j(j + 1)  (2v) . (3.80)~J(J + 1) = IT V 1-~

This term will be negligible in cases a , b , and c because the

minima in V (r) and V 2(r) must coincide, while [D(2) /J(J + 1)]

~A + andwill clearly be negative in cases a , b , and c . Hence equations

(3.69) and (3.78)-(3.80) carry a general prediction that anomalies of

this type must lead to an increase in the apparent B value. The

magnitude of this increase clearly depends on r 0vJ or vJ It must
vJ vJ

be negligible for predissociations which are weak to the extent that

all rotational lines are observed, but it may become significant in the

interpretation of fragmentary systems, such as that shown by IBr [86,

87], which contains only a few measurably sharp lines.

3.6 Direct inversion of the line width pattern

A direct method for determination of the repulsive curve Vl(r)

and the interaction strength H12 has been developed [65, 67, 68] from12

the analytical theory of the previous section. Closely akin to the

RKR method [102, 103] of bound state spectroscopy, it is based on

+
recognition that the phase integrals f J in equations (3.45), (3.48)

and (3.51) contain the same information about the upper branches of

Vl(r) and V2 (r) in figure (3.4), as that supplied by the Bohr quanti-

1sation condition (I = (n + 1 )7T) for a normal bound state curve. The
2+

only difference is that the energy dependence of ~vJ must be extracted
vJ

from the line width pattern. Once this function is known however the

separation between the turning on Vl(r) and V2 (r) at energy U is

given by [65, 68]
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'I/ (2) -.U _vo dE
b2(U) - al(U) = Jm E (U E)1/2 (3.81)1- -T (U- E) 1 /

xo

+
in case c or [68]

212 dE (3.82)
al(U) - a2(U) = X(2' 1  rUi d (3.82)

= Y (U - E) 1/

in case c . Since the turning point a2 (U) or b2 (U) is normally

known from an experimental RKR curve V2(r) , equations (3.81) or (3.82)

are sufficient to determine Vl(r) . Similarly the J dependence of

fv may be used [67] to obtain an analogue of the second RKR equation,vJ

but this is unlikely to be of practical value except for confirmatory

purposes.

+
The determination of vo rests primarily on location of the

crossing point E . As a first step it is convenient to rewrite
xo

equations (3.48), (3.51) and (3.57) in the form

= (r /hw 1/2 1/2 *-1/4 Ai vo xoE
Yvo ( vo /hVo) Ai E*

vo xo (3.83)

K(Eo - E -) /4sin(o + + n 7r)
vo xo vo 4 v

for E >>E ,
vo xo

(3.84)
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where

3G
- v

Vo V (3.85)

Yvo and E are therefore experimental quantities; the unknowns are
* + *

K, E , E , f and the integers n . Two equations for K, E
o xo v

and E may be taken from the position and magnitude of the first
xo

Airy function maximum estimated from three neighbouring line widths (or

from the greatest measured with in the absence of adequate data [68]);

the equations are

max _ 1/2A E-1/4Y = / Ai(-1.01879)K E* /4 = 0.94943K E* /4  (3.86)
0 0

Emax - E = 1.01879E* . (3.87)
xo 0

For a third equation it may be assumed that the maximum product

Y vo(E - R ) /4 in the higher energy region corresponds with a

sinusoidal maximum (a crude estimate of E will suffice for this
xo

purpose). Hence

K = [(Evo - Exo) 1/4 Yvo]ma (3.88)
VO xo vo max

As an alternative, depending on the quality of the data one might employ

four measured line widths in the Airy function region to determine the

first maximum and a point of inflexion in the line width envelope, the

latter being taken to determine the crossing point. Preliminary estimates

of K, E xj and Ej obtained in this way may be improved by comparison

between computed and measured line width patterns in the Airy region.

The phases in this region are now given by equation (3.60);
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+ 2 3/2
3 [(Evo Exo)/E ]  . 89)

It remains to eliminate ambiguities of n r in the phases obtained
v

by inversion of (3.84). A plot of

+ b2 +
f k (r)dr in case c

vo R 2

R

= k2(r)dr - in case c (3.90
a2 k2(rd - vo

against (Evo - E) 3/2 is recommended for this purpose. Here k2(r)
xo

is derived from the known RKR curve V2(r) by means of equations (2.2)

and (2.6). This graph is suggested by a linear expansion for the

potential Vl(r) (see equation (3.60)); the present model requires that

it should pass through and behave linearly at the origin. Not only will

this graph remove the necessary ambiguities of n T , it may also be
v

used to smooth out experimental uncertainties in the line width, to

refine the location of the crossing point in cases offering insufficient

data in the Airy region, and to combine data for different isotopic

substituents because the phases in (3.90) all vary at a given energy as

1/2
m

Finally one may note an internal check on the consistency of the

method, because the value of E used to fit the data in the Airy
0

function region, may be compared with that deduced from (3.58) in

terms of the slopes Flo and F2 derived from the calculated curves.

A valuable general property of the method is its stability. Refinement

of a preliminary analysis of the magnetic flourescence quenching data

for I2[B 37(0 )] [63, 78], by means of the A~ plot (figure 3.7) is found to2 u

* -1change the crossing region parameters (Exo E and K) from (306 cm,
0
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-1  -1 -l468 cm and 3.217) to (475 cm , 340 cm and 3.162) , but to alter

the turning points on Vl(r) by -.002 for v = 6,11 , ±.001 i fo

v = 14,16,18,21,24,28 and 32 and -.004 for v = 38 . There is in-

sufficient experimental data near the predicted crossing point for a

meaningful consistency check on the value of E . A comparison between
O

the refined potential curve Vt(r) and the form deduced by Chapman and

Bunker [63] from a numerical Franck-Condon calculation is given in

figure 3.8.

This direct inversion procedure has been successfully applied to

the computed predissociation data for 02( 3u) [65] and to experimental

data for OD(A 2Z+ ) [67] and I2(B 3IT(O)) [68]. The resulting repulsive

potential curves are closely comparable to those deduced by numerical

Franck-Condon calculations (see figure 3.8). The advantagesof the

direct approach are speed and flexibility, since the only prior assump-

tion is of linearity in the potential curves over the transition zone.

This suggests its general future use as a preliminary to the potentially

more exact numerical Franck-Condon procedure.

53.7 Summary and conclusions

It has been amply confirmed by practical tests that a pattern of

measured predissociation line widths (or lifetimes) contains sufficient

information to determine the repulsive curve Vl(r), over the predis-

sociation region, and also the interaction potential H12 . The line-
12

shape envelope as illustrated in figures 3.2, 3.5 and 3.6 suffices to

determine the predissociation type. The frequency of oscillations

within this envelope depends, in the normal non-diabatic case, on the
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rate of divergence of the two potential curves above the crossing point.

Similar fluctuations in the case of predissociation from the upper

adiabatic curve V+(r) depend on the shape of V2(r) . Subsidiary

fluctuations with J are also predicted, at a frequency roughly

governed according to equations (3.69) and (3.80) by the displacement

between the crossing point and the bound state potential minimum. An

analytical characterisation of these fluctuations has led to development

of the direct inversion procedure described in 3.6. The interpretation

±
of a well developed predissociation pattern in cases c is therefore

now a routine matter.

Preliminary attention has also been directed towards the concurrent

levelshift. Specifically, at energies below the crossing point one may

expect to observe shifts which are several magnitudes larger than the

line width. However it is not yet clear whether these should be inter-

preted as Fano shifts in the sense of equation (3.8), or simply as

adiabatic shifts due to an avoided curve crossing. The sign of such

shifts is negative for crossings of the + type, and may be expected

by the adiabatic interpretation to be positive in the opposite case.

At energies above the crossing point the levelshift is predicted to

oscillate about a mean value zero in such a way that within the validity

of a Landau-Zener model a small positive additional term is predicted in

the rotation constant.

Turning to the future one may expect to see the direct connection

between perturbations and predissociations of types a and b more

fully exploited, particularly when the whole spectrum is substantially

discrete. A more challenging situation for the theoretician arises

when the predissociation is strong in the spectroscopic sense that
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all discrete structure appears lost, but weak to the extent that the

line width is small compared with the vibrational spacing. Here one

might hope that analysis of low-energy level-shifts or possible pertur-

bations might lead, via the appropriate repulsive curve, to the pre-

diction and detection of fragmentary remains of the spectrum at the

oscillation minima in figures 3.5 and 3.6.

Another possibility is that spectroscopic predictions of strong

predissociation into states which correlate with ground state atoms

might stimulate the observation of such resonances by scattering

techniques, as a complement to the achievements of Bernstein [1966],

Stwalley et al. [3], and Schulte et al [4] in the somewhat simpler

shape resonance field. A possible example might be the IBr system

[86, 87], but there may be others which are preferable on experimental

grounds.
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APPENDIX: THE AIRY FUNCTION OVERLAP INTEGRAL

The integral

I = f Ai[y(r - c)] Ai[y'(r - c')]dr , (A.1)

with y > y' may be evaluated by use of the integral representation

[41]

o 1 3 1 o iu3
Ai(z) = o cos( 3 u + uz)du = 2 f exp[ + iuz]du

(A.2)

Thus

= 1 ff f exp{ i (u3 + v3 ) + i(yu + y'v)r

(2T-) -c -- 3o 3

- i(uyc + vy'c')}drdudv

1 00 __ i 3 3
= 2- f_ -oL exp{ - (u + v ) - i(uyc + vy'c')} 6(yu + y'v)dudv

2 _exp{ i [1 - (y'/y)3]v - i(c' - c)y'v}dv27Ly -- 3

Hr Y )  ]Ai[ 3 3 11t (A.3)

Here the identity [36]

-f exp ikr dr = 2r 6(k)

has been used to obtain the second line of (A.3).

(A.4)



68

CAPTIONS FOR TABLES

2.1 Values of the level shift function c(E) in the associated

quadratic approximation (equation (2.63)).

~(-c) = -cp(E)

(C) 1/24 + 7c /2880 for > 1 .

2.2 Comparative resonance positions and widths for the Lennard-Jones

model, with the potential parameters employed by Bernstein et al.

[6]. c denotes the well depth. Energies and widths are expressed
O

as a fraction of the well depth.

2.3 Comparative resonance positions and widths for the H2 ground

state [10]. Values under BC(Airy) refer to the Airy function

boundary condition at the outermost turning point.

2.4 Simple, r () , and improved, r (1) , semi-classical level widths

for the H2  ground state. q and t in the final columns are

the parameters for the associated Morse approximation; note that

7rqt >> 1 .

3.1 Parameters for some observed predissociations.
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CAPTIONS FOR FIGURES

2.1 The condition for possible predissociation by rotation.

2.2 Notation for the semi-classical theory. a, b and c denote the

classical turning points. Capital letters denote the amplitudes of

travelling waves, with primes and double primes used to indicate

outgoing and incoming motion respectively.

3.1 The Beutler-Fano line-shape for q = 3 (see equation (3.23)). The

corresponding form for q = -3 is obtained by reflection in the

origin.

+3.2 Computed linewidth variations with v [57] for cases c (upper

diagram) and c (lower diagram). Note the contrast between the

+
irregular fluctuations in case c , with the smooth variation in

case c . Compare also figure 3.4.

3.3 Computed linewidth variations with v and J [61] for homogeneous

2~+

predissociation from the A( 2 ) of OH .

3.4 Notation for the semi-classical theory (a) in case c , and (b) in

case c

3.5 A comparison between the computed linewidth pattern [57] for pre-

dissociation of 02( 3Z) and the analytical expressions (3.48)

(dashed line) and (3.57) (solid line). Note that a satisfactory

Airy function representation (solid line) as far as the third

minimum should be regarded as atypical. Curvature in the potential

N
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energy functions may normally be expected to cause deviations between

the semi-classical (dashed line) and the Airy function behaviour at

a point between the first maximum and the first minimum (see text).

3.6 Schematic line width variation with v for a c case of non-

adiabatic predissociation from the potential curve V+(r) . Vertical

lines indicate the line widths.

3.7 Refinement of the magnetic

B[3((0e)] state of 12
u 2

from equation (3.60) with

inverted curve by equation

flourescence quenching data for the

The point v = 6 is derived a postiori

E given in terms of the slope of the

(3.58).

3.8 Comparison between the repulsive curve Vl(r) deduced for the

B 37(O) state of I2 by a numerical Franck-Condon calculation [63]

and the points obtained by the direct inversion method.
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TABLE 2.1

c (E) E (E)

0 0 0.6 0.080

0.1 0.137 0.7 0.068

0.2 0.150 0.8 0.058

0.3 0.135 0.9 0.051

0.4 0.115 1.0 0.045

0.5 0.096



TABLE 2.2

I EnJ rnJ

Phase Shift( a )  BB(b) JWKB(c) Phase Shift(a) BB(b) JWKB( c )

118 31005 .31004 .31003 1.2 x 10 17 1.0 x 10- 17

197 31005 .31008 .31007 9.6 x 10 28 9.0 x 10- 28

25 .34855 .34862 .34846 6.2 x 10- 4 6.0 x 10- 4  6.7 x 10- 4

77 .34935 34935 .34938 6.9 x 10-8 80 x 10- 8

128 35005 .35007 .35007 2.0 x 20 x 1011 2.0 1 1

123 .38967 38961 .38962 1o4 x 10- 4 8°4 x 10- 5  1o0 x 10 4

87 .39006 .39009 .39008 4.1 x 10 4  4.2 x 10- 4  4o.1 x 10- 4

137 >.4012 .40233 .4025 3.4 x 10- 3 3.2 x 10 3

(a) Bernstein et al. [6] o

(b) Bain and Bardsley [11].

(c) Dickinson [20].
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TABLE 2.3

v J EnJ (cm 1  Fnj (cm -

Td (max) A(max) BC(Airy) A(EJ) ijv2.\M
- -

0

0

1

2

3

4

5

6

7

8

9

9

10

11

11

12

12

38

37

35

33

31

29

27

25

23

21

19

18

16

14

13

12

11

7510.0

6513.3

5549.8

4688.4

3925.0

3254. 7

2673.0

2175.0

1755.3

1407.0

1121. 6

725.9

586.0

480.1

199.4

385.0

215.5

7514.0

6513.5

5550.0

4689.0

3925.4

3255.4

2673. 8

2176.0

1756.7

1409.4

1127.2

725.9

586.0

481.0

199.4

398.6

215.5

7508. 7

6513. 3

5549.7

4688°2

3924.9

3254.8

2673.4

2175.7

1756.4

1409.4

a

726.0

586.1

481. 7

199.4

a

215. 6

98.1

5.98

14. 3

20. 8

25.1

25.4

25.8

27.4

31o 7

42o1

66.2

0.53

2 .93

18.5

0.005

11o 6

2°62

./ 6:

2.'. 622 J

26 7

28.4 .

29 °3

-.1 n.341.. 4!

36 L

-,(3 C -~UI

a

055

3. 22

22.3

0 0053

3
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TABLE 2.3 (cont'd.)

v J E (cm 1) (cm)
nJ nJ(m-1

Td(max) A(max) BC(Airy) A(EJ) JWKB

13 9 195.0 205.6 a 89 6 a

13 8 89.9 90.o0 90.o1 1.o 89 2.o38

14 6 81.9 121.0 a 79X0 a

14 5 45.7 49.2 a 26.o4 a

14 4 3.76 3. 76 3. 76 0.007 0.0085

a The boundary condition places this level above the barrier maximum.
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TABLE 2.4

-a (o)b r (1) b qd t
v h xrtb q t

0 38 1050 87.0 6908 98oi ,9983 62.5

1 35 1000 14.9 14.2 14.3 75 1.5.2

2 33 950 22.5 21.0 20.8 .9775 13.5

3 31 900 26.7 24.5 25.1 .9/78 12.1

4 29 875 28.4 25.8 25.4 97'3 11.1ol

5 27 800 29.3 26.3 25.8 .9765 9.97

6 25 750 31.4 27.8 27.4 .9767 9.13

7 23 675 36.9 31.7 31.7 .9799 8.44

8 21 600 48.3 39.0 42.1 9875 8.66

11 14 400 22.3 19.1 18.5 .9608 4.27

a
Estimates

tables of

of lW

LeRoy

derived by graphical extrapolation from the

[40] have been rounded to ±25 cm -.[40] have been rounded to ±25 cm The

level of agreement between rF(l) and Fexact is unaffected by a

-1 -
change of 100 cm in hw.

b LeRoy and Bernstein [10].

cc Equations (2.83).

From energy levels in table 2.3 and V ax given by LeRoy [50].
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TABLE 3.1

State Type E - E AF R Range Referencesx

(cm 1) (cml 1) (A) (

o B3  c 5000 50,000 1o89 ±010 [56, 65]
2 u

I B3 r (O) c 3000 9,000 2°81 ±0c15 [63, 68]

OH A2E+ c 4000 24,000 1.65 10.20 [61, 67]
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